由于早期的工作和新算法的开发人员,追溯式,本文使用可达性分析来验证跟随算法的安全性,这是一种用于阻尼停止和转移流量波的控制器。通过我们的物理平台收集的超过1100英里的驾驶数据,我们通过将其与人类驾驶行为进行比较来验证我们的分析结果。跟随控制器已经证明以低速抑制停止和转向流量波,但之前对其相对安全的分析仅限于加速度的上下界限。为了在先前的分析上进行扩展,可以使用可达性分析来研究其最初测试的速度的安全性,并且还处于更高的速度。示出了两种具有不同标准的安全分析配方:基于距离和基于时间的距离。跟随基于距离的标准被认为是安全的。然而,仿真结果表明,追踪者不代表人类驱动程序 - 它在车辆后面太紧密,特别是人类将认为是不安全的。另一方面,在基于前沿的安全分析的情况下,跟随不再被认为是安全的。提出了一种修改的追踪,以满足基于时间的安全标准。拟议的追随者的仿真结果表明,其响应能够更好地代表人类驾驶员行为。
translated by 谷歌翻译
这项正在进行的工作考虑了在多助理系统中自主行驶领域的可达性的安全分析。我们为速度游戏进行差异游戏后的车辆的安全问题,并研究不同的建模策略如何产生非常不同的行为,而不管其他情况策略的有效性如何。鉴于现实生活驾驶场景的性质,我们提出了我们的制定的建模策略,该策略占代理人之间的微妙互动,并将其Hamiltonian结果与其他基线进行比较。我们的配方鼓励降低汉密尔顿 - 雅各比安全性分析的保守性,以便在导航期间提供更好的安全保障。
translated by 谷歌翻译
Pragmatics is an essential part of communication, but it remains unclear what mechanisms underlie human pragmatic communication and whether NLP systems capture pragmatic language understanding. To investigate both these questions, we perform a fine-grained comparison of language models and humans on seven pragmatic phenomena, using zero-shot prompting on an expert-curated set of English materials. We ask whether models (1) select pragmatic interpretations of speaker utterances, (2) make similar error patterns as humans, and (3) use similar linguistic cues as humans to solve the tasks. We find that the largest models achieve high accuracy and match human error patterns: within incorrect responses, models favor the literal interpretation of an utterance over heuristic-based distractors. We also find evidence that models and humans are sensitive to similar linguistic cues. Our results suggest that even paradigmatic pragmatic phenomena may be solved without explicit representations of other agents' mental states, and that artificial models can be used to gain mechanistic insights into human pragmatic processing.
translated by 谷歌翻译
传统上,来自摆姿势的图像的3D室内场景重建分为两个阶段:人均深度估计,然后进行深度合并和表面重建。最近,出现了一个直接在最终3D体积特征空间中进行重建的方法家族。尽管这些方法显示出令人印象深刻的重建结果,但它们依赖于昂贵的3D卷积层,从而限制了其在资源受限环境中的应用。在这项工作中,我们回到了传统的路线,并展示着专注于高质量的多视图深度预测如何使用简单的现成深度融合来高度准确的3D重建。我们提出了一个简单的最先进的多视图深度估计器,其中有两个主要贡献:1)精心设计的2D CNN,该2D CNN利用强大的图像先验以及平面扫描特征量和几何损失,并结合2)将密钥帧和几何元数据集成到成本量中,这允许知情的深度平面评分。我们的方法在当前的最新估计中获得了重要的领先优势,以进行深度估计,并在扫描仪和7个镜头上进行3D重建,但仍允许在线实时实时低音重建。代码,模型和结果可在https://nianticlabs.github.io/simplerecon上找到
translated by 谷歌翻译
从机器学习的角度来看,当前的语音识别体系结构的表现非常出色,因此用户互动。这表明他们很好地模拟了人类生物系统。我们调查是否可以颠倒推论以提供对该生物系统的见解。特别是听力机制。使用SINCNET,我们确认端到端系统确实学习了众所周知的滤纸结构。但是,我们还表明,在学习结构中,更宽的带宽过滤器很重要。虽然可以通过初始化狭窄和宽带过滤器来获得一些好处,但生理上的限制表明,这种过滤器是在中脑而不是耳蜗中出现的。我们表明,必须修改标准的机器学习体系结构,以允许神经模拟此过程。
translated by 谷歌翻译
在结构健康监测中使用机器学习的情况变得越来越普遍,因为许多固有的任务(例如回归和分类)在开发基于条件的评估中自然而然地属于其职责。本章介绍了物理知识的机器学习概念,其中人们适应ML算法来说明工程师通常会试图建模或评估的结构。本章将演示将基于物理学的模型与数据驱动的模型相结合的灰色盒模型如何在SHM设置中提高预测能力。此处证明的方法的特殊优势是模型的推广能力,并具有在不同制度中增强的预测能力。这是一项需要评估的关键问题,或者监视数据不涵盖结构将经历的操作条件。本章将概述物理知识的ML,并在贝叶斯环境中引入了许多用于灰色盒子建模的方法。讨论的主要ML工具将是高斯过程回归,我们将证明如何通过约束,平均功能和内核设计以及最终在状态空间设置中通过约束来合并物理假设/模型。将展示一系列SHM应用程序,从负载监视离岸和航空航天结构的负载任务到长跨度桥梁的性能监控。
translated by 谷歌翻译
随着深度神经网络(DNN)已变得越来越普遍的工作量,可用于帮助其发展和部署的图书馆和工具范围已大大增长。可扩展的生产质量工具可在允许的许可下免费获得,并且可以访问足够多,甚至可以使小型团队变得非常有生产力。但是,在研究界,该工具的意识和使用不一定是广泛的,研究人员可能会因利用最新工具和工作流而缺少潜在的生产力提高。本文介绍了一个案例研究,我们讨论了我们最近生成端到端人工智能检测应用程序的经验。我们详细介绍了我们利用的高级深度学习库,容器化工作流,连续集成/部署管道以及开源代码模板,以产生竞争结果,与三个目标数据集的其他排名解决方案的性能匹配。我们强调了利用此类系统甚至可以为研究带来的价值,并详细介绍我们的解决方案,并在服务器类GPU上的准确性和推理时间以及服务器类CPU上的推理时间以及A的推理时间以及A覆盆子Pi 4。
translated by 谷歌翻译
语法提示有时具有自然语言的单词含义。例如,英语单词顺序规则限制了句子的单词顺序,例如“狗咀嚼骨头”,即使可以从世界知识和合理性中推断出“狗”作为代理人和“骨头”的状态。量化这种冗余的发生频率,以及冗余水平如何在类型上多样化的语言中变化,可以阐明语法的功能和演变。为此,我们在英语和俄语中进行了一个行为实验,并进行了跨语言计算分析,以测量从自然主义文本中提取的及物子句中语法线索的冗余性。从自然发生的句子中提取的主题,动词和物体(按随机顺序和形态标记)提出了英语和俄罗斯说话者(n = 484),并被要求确定哪个名词是该动作的推动者。两种语言的准确性都很高(英语约为89%,俄语为87%)。接下来,我们在类似的任务上训练了神经网络机分类器:预测主题对象三合会中的哪个名义是主题。在来自八个语言家庭的30种语言中,性能始终很高:中位准确性为87%,与人类实验中观察到的准确性相当。结论是,语法提示(例如单词顺序)对于仅在10-15%的自然句子中传达了代理和耐心是必要的。然而,他们可以(a)提供重要的冗余来源,(b)对于传达无法从单词中推断出的预期含义至关重要,包括对人类互动的描述,在这些含义中,角色通常是可逆的(例如,雷(Ray)帮助lu/ Lu帮助雷),表达了非典型的含义(例如,“骨头咀嚼狗”。)。
translated by 谷歌翻译
张量程序的自动安排是一个过程,搜索算法自动探索了目标硬件平台上给定程序的候选时间表(程序转换)以提高其性能。但是,这可能是一个非常耗时的过程,具体取决于张量程序的复杂性和目标设备的容量,通常会探索成千上万的程序变体。为了解决这个问题,在本文中,我们介绍了转移调整的想法,一种新颖的方法来识别和重用张量程序之间的自动安排。我们使用深度神经网络(DNN)演示了这一概念,从预先调整的DNN中采取了一组自动安排,并使用它们来减少新DNN的推理时间。我们将转移调整与最先进的ANSOR自动安装程序进行了比较,将给定DNN模型的最大速度定义为Ansor使用其建议的完整调整时间来实现的目标。在服务器级CPU上以及在11种广泛使用的DNN型号上,我们观察到,转移调整可达到$ 88.41 \%$($ 49.13 \%\%\%$)的最大速度,而ANSOR则需要$ 6.5 \ tims $ $ $ $ $ $平均与之匹配。我们还评估了在受约束的边缘CPU上进行转移调节,并观察到搜索时间的差异会加剧,Ansor需要$ 10.8 \ times $ $ $ $ $ $,以匹配转移调整的速度,这进一步证明了其价值。我们的代码可从https://www.github.com/giclab/transfer-tuning获得
translated by 谷歌翻译
机器学习(ML)方法已被证明是物理科学中非常成功的工具,特别是在应用于实验数据分析时。人工智能特别擅长在高维数据中识别模式,通常优于人类。在这里,我们应用了一个名为主成分分析(PCA)的简单ML工具,以研究来自μON光谱的数据。来自该实验的测量数量是不对称功能,其具有关于样品的平均内在磁场的信息。不对称功能的变化可能表示相变;然而,这些变化可能非常微妙,并且现有的分析方法需要了解材料的特定物理。 PCA是一个无人驾驶的ML工具,这意味着不需要对输入数据的假设,但我们发现它仍然可以成功应用于不对称曲线,并且可以恢复相位转换的指示。将该方法应用于具有不同底层物理的一系列磁性材料。我们发现,同时对所有这些材料进行PCA可以对相变指示器的清晰度产生积极影响,并且还可以改善不对称功能最重要变化的检测。对于这个联合PCA,我们介绍了一种简单的方法来跟踪不同材料的贡献以获得更有意义的分析。
translated by 谷歌翻译